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Abstract
In recent years, federated learning (FL) has emerged as a
promising technique to enable decentralized training of mod-
els without the need for data centralization, addressing pri-
vacy concerns and reducing communication overhead. The
challenge, however, lies in scaling federated systems to ac-
commodate clients with different computational capabilities.
The heterogeneity of clients in terms of data, model struc-
tures, and computational resources presents significant chal-
lenges. Addressing these challenges can lead to more robust
and efficient FL systems, making it possible to leverage di-
verse data sources and computational environments. Here we
propose a system where small language models run on het-
erogeneous clients while a large, more powerful model at the
server aggregates their contributions. This architecture lever-
ages the strengths of both small, task-specific client models
and a large server model to enhance generalization and ef-
ficiency. This is important because it addresses the growing
need for scalable, privacy-preserving systems that can oper-
ate in diverse environments with varying resources. Through
such a system we intend to contribute to the AI field by im-
proving the efficiency of federated learning systems while en-
hancing their adaptability to real-world applications.

Background
Federated learning has been widely studied as a method
for distributed learning without the need to centralize data,
thus preserving privacy (Kairouz et al. 2021). Most FL sys-
tems assume homogeneous clients or models with compa-
rable architectures. However, real-world applications often
require accommodating clients with diverse computational
resources (e.g., mobile phones vs. cloud servers). Previous
works, such as FedAvg (McMahan et al. 2023), have laid the
groundwork for parameter aggregation in federated learn-
ing, yet most focus on homogeneous models across clients
which are not practical for large-scale applications (Ye et al.
2023). Other studies like FedProx (Li et al. 2020) explore
how to handle heterogeneity among clients, but none have
effectively tackled the integration of models with vastly dif-
ferent sizes and architectures.

Heterogeneous federated learning (HFL) addresses this
by considering differences in data distributions, model struc-
tures, and computational resources among clients (Chen
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et al. 2024). The proposed work builds on this existing re-
search by introducing the novel concept of using small,
task-specific LLMs at the client level (e.g., bloom-560m)
while aggregating them into a much larger, more general
model (e.g., bloom-7b1) at the central server. This ap-
proach ensures that smaller models can operate effectively in
resource-constrained environments, while the larger model
benefits from diverse task-specific knowledge.

Methods such as Federated Knowledge Distillation (Seo
et al. 2020) have been proposed to transfer knowledge from
teacher models to student models using logits or soft labels.
However, these approaches typically require access to a pub-
lic dataset to facilitate the knowledge transfer process, which
may not be optimal for the true purpose of a federated setup.

Approach
The proposed system will consist of a system of heteroge-
neous clients, each running a small language model which is
lightweight, allowing them to operate efficiently in resource-
constrained environments, and a central server hosting a
large model. The clients will fine-tune their models based on
the specific tasks that they are performing, using localized
data. Periodically, these clients will send their model up-
dates (not raw data) to the central server. The server will then
use an aggregation mechanism (e.g., gradient aggregation or
knowledge distillation) to update the large model based on
the insights from the smaller, task-specific models. Since the
client models are significantly smaller than the server model,
a simple gradient average may not suffice. Instead, we inves-
tigate different approaches to tackle the problem.

Each small LLM will generate task vectors (Ilharco et al.
2023), which will capture the direction and magnitude of
task-specific updates in its weight space. These vectors will
encapsulate how the local model needs to be updated in or-
der to specialize in its specific task. Task vectors can be com-
puted as the difference between the pre-trained base model
weights and the fine-tuned task-specific weights. These task
vectors encode:

• Direction: The type of changes required (e.g., emphasiz-
ing certain parameters or sub-networks)

• Magnitude: The intensity of changes (e.g., how much the
model adapts to the local task)

The server model operates in a higher-dimensional weight



space due to its larger capacity. Task vectors need to be pro-
jected or mapped into this larger space while preserving their
core characteristics. A possible technique for mapping task
vectors is linear projection where we will use learned linear
transformation matrices to map smaller model updates to the
larger model’s space.

Task vectors from all clients are aggregated at the server.
Aggregation will be weighted by the quality of the task-
specific update and the data heterogeneity of the client’s lo-
cal dataset. The server update will look like:

W t+1
server = W t

server + η

∑n
i=1 αi · task vectori∑n

i=1 αi

Here, αi are the aggregation weights, and η is the learning
rate.

We can also explore the use of parameter interpolation
methods that align the parameter spaces of different mod-
els, ensuring smoother updates. To account for heterogene-
ity in model sizes and architectures, we will adopt layer-wise
adaptive learning rates (LARS) (You, Gitman, and Ginsburg
2017). This optimization technique adjusts the learning rate
for each layer of the model based on the magnitude of its
weight, ensuring that smaller models can contribute effec-
tively.

Since client models will be trained in specific tasks, con-
tinual learning techniques will be crucial to avoid catas-
trophic forgetting when they contribute to the large model.

Overall, this problem can be looked at, in a way which
involves using a hybrid of federated learning techniques and
knowledge distillation. The small models on the client side
will act as specialists, learning in-depth on specific tasks,
while the large server model acts as a generalist, learning
across many tasks to generalize better.

Evaluation
The evaluation will be conducted on a variety of publicly
available datasets that are widely used in FL and NLP, ensur-
ing both diversity in the tasks and robustness in the model’s
performance. The task type, dataset and the metrics are de-
scribed in Table 1.

Discussion
We expect to find that using heterogeneous clients in a fed-
erated learning setup, each with a smaller model, can ef-
fectively contribute to a centralized, larger model which
would demonstrate an improved performance. It should also
achieve a balance between global model performance and
local personalization, making it suitable for diverse appli-
cations. This research will provide a robust framework for
federated learning in heterogeneous environments, paving
the way for more inclusive and efficient AI model train-
ing. The implications of this approach of working would be
high, especially in expanding federated learning into more
diverse environments where computational resources vary
widely. Moreover, the research could lead to more privacy-
preserving models that require minimal communication of
sensitive data. For society, this would mean more secure AI

Task Type Dataset Metric

Summarization
XL-Sum
(Hasan et al.
2021)

ROUGE

Translation
IN22, FLORES
(Gala et al.
2023)

BLEU, chrF

Hate Speech
Classification

Ethos (Mollas
et al. 2022) Accuracy

Reasoning
COPA (Bras-
sard et al.
2022)

Accuracy

Federated Learning Metrics

Communication
Efficiency,
Overload,
Resource Uti-
lization

Table 1: Evaluation benchmark and metrics

applications in domains like healthcare, education, and fi-
nance, where maintaining privacy while ensuring accurate
predictions is crucial.

Conclusion
The primary research challenge lies in designing a com-
plex and robust aggregation mechanism capable of effec-
tively updating the larger model using the weights of hetero-
geneous, smaller models. Traditional aggregation methods,
such as FedAvg, or a simple addition of task vectors, are ef-
fective when dealing with models of similar size and archi-
tecture. However, when multiple smaller models, each fine-
tuned on specific tasks, contribute to a much larger central
model, this straightforward approach is insufficient. There
is a need for an advanced aggregation strategy that can rec-
oncile differences in model sizes and parameters. Different
techniques such as gradient-based aggregation, knowledge
distillation, and parameter interpolation will be explored to
achieve a balance between task specialization and general-
ization.
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